Iteration methods for stability spectra of solitary waves
نویسنده
چکیده
Three iteration methods are proposed for the computation of eigenvalues and eigenfunctions in the linear stability of solitary waves. These methods are based on iterating certain time evolution equations associated with the linear stability eigenvalue problem. The first method uses the fourth-order Runge–Kutta method to iterate the pre-conditioned linear stability operator, and it usually converges to the most unstable eigenvalue of the solitary wave. The second method uses the Euler method to iterate the ‘‘square” of the pre-conditioned linear stability operator. This method is shown to converge to any discrete eigenvalue in the stability spectrum. The third method is obtained by incorporating the mode elimination technique into the second method, which speeds up the convergence considerably. These methods are applied to various examples of physical interest, and are found to be efficient, easy to implement, and low in memory usage. 2008 Elsevier Inc. All rights reserved. MSC: 65N12; 35P15; 35Q55
منابع مشابه
Spectra of Linearized Operators for NLS Solitary Waves
Nonlinear Schrödinger equations (NLSs) with focusing power nonlinearities have solitary wave solutions. The spectra of the linearized operators around these solitary waves are intimately connected to stability properties of the solitary waves and to the long-time dynamics of solutions of NLSs. We study these spectra in detail, both analytically and numerically.
متن کاملConstruction of solitary solution and compacton-like solution by the variational iteration method using He's polynomials
Variational Iteration method using He's polynomials can be used to construct solitary solution and compacton-like solution for nonlinear dispersive equatioons. The chosen initial solution can be determined in compacton-like form or in solitary form with some compacton-like or solitary forms with some unknown parameters, which can be determined in the solution procedure. The compacton-like solu...
متن کاملSpectral Stability of Stationary Solutions of a Boussinesq System Describing Long Waves in Dispersive Media
We study the spectral (in)stability of one-dimensional solitary and cnoidal waves of various Boussinesq systems. These systems model three-dimensional water waves (i.e., the surface is two-dimensional) with or without surface tension. We present the results of numerous computations examining the spectra related to the linear stability problem for both stationary solitary and cnoidal waves with ...
متن کاملMotions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation
The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The Implicitly Restarted Arnoldi Method for banded matrices with shift-invert was used to solve the linearised spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbati...
متن کاملSimplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008